Rounding Values Preserving Their Sum with RoundToSum (Excel / VBA)

(C) (P) 2024 Bernd Plumhoff Status: 12-October-2024

Abstract

Rounded values do not always sum up to their original total, as demonstrated in this article. How can
you ensure that the sum of rounded percentages equals exactly 100%? Is it possible to guarantee
that, for accounting purposes, the distribution of overhead costs precisely matches the original total?
These challenges are well-known and have been studied extensively.

This article introduces a simple solution using Excel/VBA. The function presented here can round
relative values (e.g., percentages) to ensure they sum to exactly 100%. It can also round absolute
values (such as cost distributions) while preserving their original sum after rounding. A key
parameter allows users to choose which type of error to minimize — absolute error or relative error
— compared to the common half-up rounding method.

Table of Contents

Rounding Values Preserving Their Sum with RoundToSum (EXcel / VBA)......c..cocveeeereecreeeceeeeveeeeieeene 1
LY o131 1o O OO OSSP PR 1
Rounding Values Preserving TREII SUMciii ittt eseee s vee e e svee e e bee e s s sarae e e snreeas 2

T o Yo = =T Yo T o L= PP 2
Example With ADSOIULE VAIUEScocueiiiiciee ettt e e s arae e e e eareeas 2
The User-Defined VBA FUNCLION ROUNATOSUMcoceiiiiiiiiiieitesiteste ettt 3
RoundToSUM Program COEuuiiiiiieiei ettt e e ecte e e e e e e e st e e e e e e s e esbateeeeeeeseesnssssaneaeeseesnnnsenns 4
Rounding Values AIters THEIr SUMcoiuiie ettt et sree e e bae e e e snbae e e eareeas 5
Usage EXamples Of ROUNATOSUMc.c..uueee ettt tee ettt e et eaee e s e ebae e s e satae e e e araeas 7
AlloCation OF OVEINEAUSottt ettt et et st be b 7
Example of an Exact Relation of Random NUMDErS.........c..eiiiiiiiiiciiiee e e 9
Fair Staff Selection Based 0N T@AM SiZ€......cccuiiuiiiiiniinie ettt 12
Distribute @ SamMPle NOIMaAllY......coocuiiie e e e e e e s ebae e e e aareas 14
Distribution of Budgets Among Remaining Staff............ccovviiiiiiiiicie e, 19
Take Vacation When Less iS GOING ON.....uuiieeiiiiiiiiiiiieee e eecitrte e e e e e e escrtare e e e e s s e snnbeaeeeseesssnnsnseneeeeas 21
Assign Work Units Adjusted by Delivered OULPULccooceiiiiiiie e 24
RoundToSum Versus Other METhOOSoiviiiieiiiniericeeeee e 26
RoundToSum Versus Other “Simple” Methods........ccoveiiiciiiiiciiiee e 26
RoundToSum Compared t0 SDDHONALviiiiiiee et e e 29

[IR=] = LU I 29

Rounding Values Preserving Their Sum

If you need to round values without changing their sum, you might need to round one or more
summands to the more distant rounded value.

Percentage Example

For example, the values 11, 45, and 555, which sum to 611, do not yield a percentage total of 100.00
but rather 99.99 if rounded to two decimal places. The bold values in non-sum cells have been
adjusted using the RoundToSum function:

Percentage | Minimize | Minimize
rounded to | absolute | relative
Values | 2 decimals | Error Error
11 1.80 1.80 1.80
45 7.36 7.37 7.36
555 90.83 90.83 90.84
| Sum 611 99.99 100.00 100.00

The Excel / VBA function call RoundToSum({11,45,555},2,FALSE,1) would result in {1.80,7.37,90.83},
though. Here, the percentage value 7.364975 is rounded differently to achieve a percentage sum of
100.00 and to minimize the absolute error compared to half-up rounding. By using
RoundToSum({11,45,555},2,FALSE,2) we would have received {1.80,7.36,90.84}, as this would
minimize the relative error.

Example with Absolute Values

The sum of the second column differs by +2,000 from the rounded sum. The bold values in non-sum
cells have been adjusted using the RoundToSum function:

Rounded to | Minimize | Minimize

absolute absolute | relative

Values 1,000 Error Error
4,523 5.000 5.000 5.000
456 0 0 0
-78.845 -79.000 -79.000 -79.000
-14.491 -14.000 -15.000 -14.000
65.789 66.000 66.000 66.000
129.512 130.000 129.000 129.000
15.562 16.000 16.000 16.000
548.555 549.000 549.000 548.000
1.590 2.000 2.000 2.000
-897 -1.000 -1.000 -1.000
6.968 7.000 7.000 7.000
2.987 3.000 3.000 3.000
Sum | 681.709 684.000 682.000 682.000
(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024) Seite 2 / 29

The User-Defined VBA Function RoundToSum

Name

RoundToSum — Rounding values preserving their rounded sum

Synopsis

RoundToSum(vinput, [IDigits], [bAbsSum], [IErrorType], [bDontAmend])

Description

RoundToSum rounds values without altering their rounded sum. It uses the largest remainder
method to minimize the error compared to the commonly used half-up rounding method. If the error

is identical for one or more values, the first value(s) encountered will be adjusted.

Note: This solution is limited to one-dimensional tables without subtotals. There is no general
solution for higher-dimensional tables or tables with subtotals.

Parameters

vinput Range or array containing the unrounded input values.

IDigits Optional, default value is 2. The number of digits to round to. For example: 0 rounds
to integers, 2 rounds to the nearest cent, -3 rounds to the nearest thousand.

bAbsSum Optional, default value is TRUE. TRUE rounds the values directly. FALSE adjusts the
percentages so they sum to exactly 100%.

IErrorType Optional, default value is 1. The type of error to minimize: 1 for absolute error, 2 for

relative error.
bDontAmend Optional, default value is FALSE. TRUE prevents adjusting the values to match the

rounded sum. FALSE makes adjustments as described above. This parameter is
mainly for demonstration purposes to see the function’s impact.

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024) Seite 3/ 29

RoundToSum Program Code

Option Explicit

Enum mc Macro_Categories
mcFinancial = 1
mcDate_and Time
mcMath_and Trig
mcStatistical
mcLookup_and_Reference
mcDatabase
mcText
mcLogical
mcInformation
mcCommands
mcCustomizing
mcMacro_Control
mcDDE_External
mcUser_Defined
mcFirst_custom_category
mcSecond_custom_category 'and so on
End Enum 'mc_Macro_Categories

Function RoundToSum(vInput As Variant, Optional 1lDigits As Long = 2, Optional bAbsSum As Boolean = True,
Optional lErrorType As Long = 1, Optional bDontAmend As Boolean = False) As Variant

'Calculate rounded summands which exactly add up to the rounded sum of unrounded summands.

'It uses the largest remainder method which minimizes the error to the original unrounded summands.

'V2.1 PB 12-0Oct-2024 (C) (P) by Bernd Plumhoff

Dim i As Long, j As Long, k As Long, n As Long, lCount As Long, 1Sgn As Long

Dim d As Double, dDiff As Double, dRoundedSum As Double, dSumAbs As Double: Dim vA As Variant

With Application.WorksheetFunction

vA = .Transpose (.Transpose (vInput)): On Error GoTo Errhdl: i = vA(l) 'Force error in case of vertical arrays
On Error GoTo 0: n = UBound(vA): ReDim vC(l To n) As Variant, vD(1l To n) As Variant: dSumBAbs = .Sum(vA)
For 1 =1 Ton
d = IIf(bAbsSum, vA(i), vA(i) / dSumAbs * 100#): vC(i) = .Round(d, 1lDigits)
If lErrorType = 1 Then 'Absolute error
vD(i) = vC(i) - d
ElselIf 1ErrorType = 2 Then 'Relative error
vD(i) = (vC(i) - d) * d
Else
RoundToSum = CVErr (xlErrValue): Exit Function
End If
Next i
If Not bDontAmend Then
dRoundedSum = .Round(IIf (bAbsSum, dSumAbs, 100#), 1lDigits)
dDiff = .Round(dRoundedSum - .Sum(vC), 1lDigits)
If dpiff <> 0# Then
1sgn = Sgn(dDiff): lCount = .Round(Abs(dDiff) * 10 ~ 1lDigits, 0)

'Now find highest (lowest) lCount indices in vD
ReDim m(1 To 1lCount) As Long
For i = 1 To 1lCount: m(i) = i: Next i
For i = 1 To 1lCount - 1
For j =1 + 1 To 1lCount
If 1Sgn * vD(m(i)) > 1Sgn * vD(m(j)) Then k = m(i): m(i) = m(j): m(j) = k
Next j
Next i
For 1 = 1Count + 1 To n
If 1Sgn * vD(i) < 1Sgn * vD(m(lCount)) Then
j = 1lCount - 1
Do While j > 0
If 1Sgn * vD(i) >= 1Sgn * vD(m(j)) Then Exit Do

j=3-1
Loop
For k = 1Count To j + 2 Step -1: m(k) = m(k - 1): Next k: m(j + 1) = i
End If
Next i
For 1 = 1 To lCount: vC(m(i)) = .Round(vC(m(i)) + dDiff / lCount, 1Digits): Next i
End If
End If
RoundToSum = vC
If TypeName (Application.Caller) = "Range" Then
If Application.Caller.Rows.Count > Application.Caller.Columns.Count Then
RoundToSum = .Transpose(vC) 'It's two-dimensional with 2nd dim const = 1
End If
End If
Exit Function
Errhdl:
'Transpose variants to be able to address them with vA (i), not vA(i,1
vA = .Transpose (vA): Resume Next
End With

End Function

Sub DescribeFunction_RoundToSum ()
'Run this only once, then you will see this description in the function menu
Dim FuncName As String, FuncDesc As String, Category As String, ArgDesc(l To 5) As String

FuncName = "RoundToSum"

FuncDesc = "Rounding values preserving their rounded sum"

Category = mcMath_and Trig

ArgDesc(l) = "Range or array which contains unrounded values"

ArgDesc(2) = "[Optional = 2] Number of digits to round to. For example: 0 rounds to integers, 2 rounds to the cent, -3 will
use thousands"

ArgDesc(3) = "[Optional = True] True takes the summands as they are; False works on the summands' percentages to make all
percentages add up to 100% exactly"

ArgDesc(4) = "[Optional = 1] Error type: 1= absolute error, 2 = relative error"

ArgDesc (5) = "[Optional = False] True does not amend the rounded summands to match the rounded sum; False performs the
calculation as described"
Application.MacroOptions _
Macro:=FuncName, _
Description:=FuncDesc,
Category:=Category, _
ArgumentDescriptions:=ArgDesc
End Sub

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024) Seite 4/ 29

Rounding Values Alters Their Sum

How likely is it that a sum of rounded values is not identical to
their rounded sum?

For two random floating point numbers this is obvious: The
likelihood is around 25% - that is the percentage of red in this
picture:

But it might be somewhat surprising that the likelihood
approaches 90% if you round and add more and more numbers:

% of altered sum

100%
0%
B0%
70%
60%
50%
40%
30%
20%
10%

0%

With seven floating point numbers the likelihood is already larger than 50% that the sum of rounded

values is not equal to their rounded sum.

Rounded Percentages

Rounded percentages also often fail to add up to 100%.

With two random numbers the issue arises only if both numbers
equal 0.5:

But with more random numbers it is similar to the problem stated
initially, just with around one number more. Rounded percentages

of three arbitrary numbers fail to add up to 1 with a chance of
around 25%:

% of altered % sum

100%
90%
B0%
T0%
60%
50%
40%
30%
20%
10%%

0%

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024)

0.5

0.5

Seite 5/ 29

Monte Carlo Program Code

Const n = 100
Const runs = 20000
Const bOnlyPositive = True 'Without loss of generality

Sub monte_carlo_add_rounded_values ()
'Calculates for 2 to n how likely it is

'that rounding would not alter their sum.
'Example: for 2 numbers there is a 25% chance
'that the sum of their rounded values is not
'equal to their rounded sum.

'Source (EN): https://www.sulprobil.com/rounding values_alters_their sum en/
'Source (DE): https://www.bplumhoff.de/werte runden_aendert_ ihre_ summe_de/

'(C) (P) by Bernd Plumhoff 16-Dec-2023 PB V0.3

Dim i As Long
Dim jJ As Long
Dim k As Long
Dim m As Long
Dim d As Double
Dim sl As Double
Dim s2 As Double

With Application.WorksheetFunction

Randomize
For 1 = 2 To n
m =0
For j = 1 To runs
sl = 0#
s2 = 0#

For k =1 To 1
If bOnlyPositive Then

d = Rnd()
Else

d = 2# * Rnd() - 1#
End If

sl =sl +d
s2 = s2 + .Round(d, 0)
Next k
sl = .Round(sl, 0)
If sl <> s2 Then
m=m+ 1
End If
Next j
Cells(i, 1) = i
Cells(i, 2) = m / runs
Next i
End With
End Sub

Sub monte_carlo_percentage_sum_of rounded values ()
'Calculates for 2 to n how likely it is that
'rounding would not alter their percentage sum.
'Example: for 2 numbers there is a 25% chance
'that the sum of their rounded values is not
'equal to their rounded sum.

'Source (EN): https://www.sulprobil.com/rounding values_alters_their sum_en/

'Source (DE): https://www.bplumhoff.de/werte runden_aendert_ihre_summe_de/
'(C) (P) by Bernd Plumhoff 16-Dec-2023 PB V0.2

Dim i As Long

Dim j As Long

Dim k As Long

Dim m As Long

Dim sl As Double

Dim s2 As Double

With Application.WorksheetFunction

Randomize
For 1 = 2 To n
m =0
ReDim e(1 To i) As Double
For j = 1 To runs
sl = 0#

For k = 1 To 1
If bOnlyPositive Then
e(k) = Rnd()

Else
e(k) = 2# * Rnd() - 1#
End If
sl = sl + e(k)
Next k
s2 = 0#

For k =1 To i

e(k) = .Round(1000# * e(k) / sl, 0)
s2 = s2 + e(k)
Next k

If s2 <> 1000# Then
m=m+ 1
End If
Next j
Cells(i, 1) = 1
Cells(i, 2) = m / runs
Next i
End With
End Sub

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024)

Seite 6/ 29

Usage Examples of RoundToSum

Allocation of Overheads

When allocating overhead costs to products you often encounter the fact that the resulting sum of
allocated overheads does not equal the original cost sum. Due to rounding differences you frequently
face a little cent difference. In this case the user defined function RoundToSum can help.

A Real-Life Example

We present an allocation of overheads where all individual cent values accurately add up to their
intermediate or final sums.

First you define how the overheads have to be allocated to support cost centres:

Phase 1 - Allocation of overhead costs to all cost centers

Overhead Cost Centers Secondary Cost Centers Primary Cost Centers
Kay Total Management Secretariat Accounting Controlling HR Marketing _ Trainees Waorkers Cou Factory 1 Factory 2 Car Park Production1_Production? Production3
per Head 10: 1 3 12 10
sqm 2685 50 40 100 30 50 50 15 250 350 100 500 550 600
uniform 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Weighted 16 2 1 1 1 1 2 1 1 1 1 1 1 1 1

The first allocation of overheads uses a rounding correction so that all summands accurately sum up
on support cost centre level:

D13 - o || =RoundToSum(SC13/Keys!$BS8*Keys!C38:P38)
€ D E F G H J K L M N ® P a R

1 |Allocation of overhead costs to all cost centers

2

3 Overhead Cost Centers Secandary Cost Centers Primary Cost Centers Total

4 |Cost Category Key Overhead Costs Management Secretariat _Accounting _Controlling HR Marketing _ Trainees _ Workers Cou Factory 1 Factory2 CarPark _ Production] Production2 Production3

5 |Travel expenses Weighted 10.000,00 1.250,00 625,00 625,00 625,00 625,00 1.250,00 625,00 62500 625,00 625,00 625,00 625,00 625,00 625,00 10.000,00
6 |Supenisory board uniform 3.000.00 375.00 187.50 187.50 187.50 187.50 375,00 187.50 187.50 187.50 187.50 187.50 187.50 187.50 187,50 3.000.00
7 |Hospitality Weighted 2.000,00 250,00 125,00 125,00 125,00 125,00 250,00 125,00 125,00 125,00 125,00 125,00 125,00 125,00 12500 2.000,00
8 |Presents Weighted 1.000.00 125.00 62,50 62.50 62,50 62,50 125,00 62,50 62.50 62,50 62,50 62,50 62,50 62,50 6250 1.000,00
9 |Fees, charges uniform 500.00 62,50 31.25 31.25 31,25 3125 62,50 3125 31.25 31.25 31.25 31.25 31,25 3125 3125 500.00
10 |Car costs Weighted 4500,00 562,50 281,25 231,25 281,25 261,25 562,50 28125 28125 26125 281,25 281,25 281,25 281,25 268125 4.500,00
11 |Hardware, equipment Weighted 200.00 25,00 12.50 12.50 12,50 12.50 26,00 12.50 12.50 12,50 12.50 12.50 12,50 12.50 12.50 200,00
12 |Extemal audit uniform 10.000,00 __ 1.250,00 625,00 625,00 625,00 625,00 1.250,00 625,00 625,00 625,00 625,00 625,00 625,00 625,00 625,00 10.000,00
13 |Other operating expenses sqm 5.500.00 667.50] 343.75 343.75 34375 343,75 687,50 343.75 343.75 343.75 343.75 343.75 34375 343,75 343.75] 5.500,00
14 |Energy costs sqm 6.000.00 750,00 375.00 375.00 375,00 375,00 750,00 375.00 375.00 375.00 375.00 375.00 375,00 375,00 375,00 6.000.00
15 Insurances per Head 5.000,00 625,00 312,50 312,50 312,50 312,50 625,00 312,50 312,50 312,50 312,50 312,50 312,50 312,50 312,50 £.000,00
16 |Legal costs Weighted 5.000.00 625.00 312,50 312,50 312,50 31250 625,00 312,50 312,50 31250 312,50 312,50 312,50 312,50 31250 5.000,00
17 | Accounting costs Weighted 1.000,00 125,00 62,50 62,50 62,50 62,50 125,00 62,50 62,50 62,50 62,50 62,50 62,50 62,50 62,50 1.000,00
18 | Stationary Weighted 2.000,00 250,00 125,00 125,00 126,00 126,00 260,00 126,00 125,00 125,00 125,00 125,00 126,00 126,00 126,00 2.000,00
19 | Telecommunication Weighted 2.500.00 31250 156.25 156.25 156,25 156.25 312,50 156.25 156.25 156.25 156.25 156.25 156,25 156.25 15625 2.500,00
20 |Shipping and mailing costs Weighted 2.000,00 250,00 125,00 125,00 125,00 125,00 250,00 125,00 125,00 125,00 125,00 125,00 125,00 125,00 12500 2.000,00
21 |Books, magazines Weighted 1.000.00 125.00 62,50 62.50 62,50 62,50 125,00 62,50 62.50 62,50 62,50 62,50 62,50 62,50 6250 1.000,00
22 |Money transfer fees Weighted 500.00 62,50 31.25 31.25 3125 3125 62,50 3125 31.25 31.25 31.25 31.25 3125 3125 3125 500.00
23 |Damages, compensation uniform 250,00 3124 16,62 16,62 16,62 15,62 3125 15,62 15,63 15,63 16,63 16,63 16,63 15,63 15,63 250,00
24 |Working clothes Weighted 1.500.00 187.50 93.75 93.75 9375 93,75 187.50 93,75 93.75 93.75 93.75 93.75 9375 93,75 9375 1500.00
25 |Handicapped fee uniform 2.000,00 250,00 125,00 125,00 125,00 125,00 250,00 125,00 125,00 125,00 125,00 125,00 125,00 125,00 12500 2.000,00
26 [Training and further educatior Weighted 2.000.00 250,00 126,00 126,00 126,00 125,00 250,00 125,00 125.00 126.00 126,00 126,00 126,00 126,00 126,00 2.00000
27 |Other operating expenses _ Weighted 1.500.00 187.50 93.75 93.75 9375 93,75 187.50 93,75 93.75 93.75 93.75 93.75 9375 93,75 9375 1.500.00
28 [Total 68.950.00 861874 430937 430937 430937 430937 861875 430937 430938 430938 430938 430938 430938 4.309,38 4.309,38 68.950,00

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024) Seite 7/ 29

The second allocation of overheads also uses a rounding correction so that all support cost centres
get accurately distributed to products:

Phase 2 - Allocation of Overhead Cost Centers and Secondary Cost Centers to Primary Cost Centers

Secondary Cost Ceni Key

Production1 Production2 Production3 Total

Management Weighted 30% 40% 30% 100%
Secretariat Weighted 40% 50% 10% 100%
Accounting Weighted 30% 13% 57% 100%
Controlling unifarm 1 1 1 3
HR per Head 20 20 25 65
Marketing Weighted 30% 42% 28% 100%
Trainees unifarm 1 1 1 3
Workers Council per Head 20 20 25 65
Factory 1 Weighted 25% 20% 55% 100%
Factory 2 Weighted 20% 20% 60% 100%
Car Park Weighted 40% 30% 30% 100%
The final result:
E9 5 =RoundToSum(5D9/Keys!SF20*Keys!C20:E20)
A B C D E F G H
1 |Allocation of Overhead Cost Centers and Secondary Cost Centers to Primary Cost Centers
2
Allocation
3 |Allocated Cost Centers Direct Costs Phase 1 Total Production1 Production2 Production3 Total
4
5 |Management 111.666,00 8.618,74 12028474 3608542 4811390 3608542 12023474
6 |Secretariat 34.627.00 4.309,37 38.936,37 1557455 19.468.18 3.893.64 38.936.37
7 |Accounting 96.834,00 4.309,37 101.143,37 3034301 13.148.64 57.651.72 101.143.37
8 |Controlling 83.875,00 4.309,37 8818437 2939479 2939479 29.394.79 88.184,37
9 |HR 53.765,00 4.309,37 58_074,371 17.869,04] 17.869,04 22_335,29| 58.074,37
10 |Marketing 239.170,00 8.618,76 247.788.75 7433662 104.071,28 6938085 24778875
11 Trainees 147.397,00 430937 151.706,37 5056879 50568,79 5056879 151.706,37
12 \Waorkers Council 471,00 4.309,38 4.780,38 1.470,88 1.470,89 1.838.61 4.780,38
13 |Factory 1 125.225,00 4.309,38 12953438 3238359 25.906,88 71.24391 129.534 38
14 |Factory 2 2.398.512,00 4.309,38 240282138 480564 27 48056428 144169283 2.402821,38
15 |Car Park 26.992,00 430938 31.301.38 12.520,55 9.390,42 9.390.11 31.301.,38
16 |Phase 1 Allocation 4.309.38 4.309.38 4.309.38 12.925.14
17 |Phase 2 Allocation 3.318.534,00 56.021,86 3.374.555.86 781.111,51 799.967,09 1.793.477.26 3.374.555 86
18 Directs Costs 738.060,00 854.000,00 650.360,00 2.242.420.00
19 |Total Primary Cost Centers 1.523.480,89 1.658.276,47 2.448.146,64 5.629.904,00
20
21 |Overhead rate 106.,4% 94,2% 276.4% 161,1%

This correct allocation of overheads you will be able to enter into a general ledger without any cent /
penny difference.

(C) (P) 2024 Bernd Plumhoff

RoundToSum (Status: 12-Oct-2024)

Seite 8/ 29

Example of an Exact Relation of Random Numbers

It is fairly easy to create a loaded die, let us say on average the 6 should appear twice as often as all

the other numbers 1 thru 5: Enter into Al: =MIN(INT(RAND()*7+1),6)

But what if you want to create 7 rolls of this die and all numbers between 1 and 5 should appear
exactly once and 6 exactly twice?

Here is a general solution:

D18 ~ S | {=INDEX([5AS53:5A55,INT(sbExactRandHistogrm(6,1,4,5B53:5855)))}

A B 5 D | E | F | G | H | 1 K L
1 Just statistical likelihood Total

Pos /
2 Color Likelihood Iteration One Two Three Four Five Six Green Yellow Red
3 Green 50.00% 1 Green Green Green Green Green Red 5 o 1
4 Yellow 33.33% 2 Green Green Yellow Green Yellow Red 3 2 1
5 Red 16.67% 3 Green yellow Yellow Green Red Green 3 2 1
6 4 Yellow Green Red Green Yellow Yellow 2 3 1
7 5 Green Yellow Yellow Green Green Yellow 3 3 o
8 6 Green Yellow Red Green Green Green 4 1 1
9 7 Green Yellow Red Green Yellow Red 2 2 2
10 8 Yellow Green Green Yellow Red Yellow 2 3 1
11 9 Yellow Green Red Red Red Green 2 1 3
12 10 Green yellow Green Yellow Red Red 2 2 2
13 Total: 23 15 13
14 Should stochastically be: 30 20 10
rz
16 Exact likelihood Total
Pos [

17 Iteration One Two Three Four Five Six Green Yellow Red
EI 1 Green Red Green Yellow Green Yellow 3 2 1
19 2 Yellow Green Green Green Red Yellow 3 2 1
20 3 Green Green Green Red Yellow Yellow 3 2 1
21 4 Yellow Green Green Green Yellow Red 3 2 1
22 5 Red Green Green Yellow Yellow Green 3 2 1
23 6 Green Yellow Green Yellow Red Green 3 2 1
24 7 Green Green Yellow Yellow Green Red 3 2 1
25 8 Green Yellow Green Yellow Green Red 3 2 1
26 9 Yellow Red Yellow Green Green Green 3 2 1
27 10 Green Green Yellow Yellow Red Green 3 2 1
28 Total: 30 20 10
29 Should stochastically be: 30 20 10
(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024) Seite 9/ 29

The User-Defined VBA Function sbExactRandHistogrm

Name

sbExactRandHistogrm — Create an exact double histogram distribution.

Synopsis

sbExactRandHistogrm(ldraw, dmin, dmax, vWeight)

Description

sbExactRandHistogrm creates an exact histogram distribution for Idraw draws of floating point
numbers with double precision within range dmin:dmax. This range is divided into vWeight.count
classes. Each class has weight vWeight(i), reflecting the probability of occurrence of a value within

the class. If weights can’t be achieved exactly for Idraw draws the largest remainder method will be
applied to minimize the absolute error. This function calls RoundToSum.

Parameters

Idraw Number of draws

dmin Minimum = lower boundary of range of numbers to draw
dmax Maximum = upper boundary of range of numbers to draw

vWeight Array of weights. Array size determines the number of different classes the range dmin :
dmax is divided into. Values in this array specify likelihood of this class' numbers to
appear (be drawn).

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024) Seite 10 / 29

sbRandHistogrm Program Code

Function sbExactRandHistogrm(ldraw As Long,

dmin As Double, _

dmax As Double, _

vWeight As Variant) As Variant
'Creates an exact histogram distribution for ldraw draws within range dmin:dmax.
'This range is divided into vWeight.count classes. Each class has weight vWeight (i)

'reflecting the probability of occurrence of a value within the class.

'If weights can't be achieved exactly for ldraw draws the largest remainder method will

'be applied to minimize the absolute error. This function calls (needs) RoundToSum.
'Source (EN): http://www.sulprobil.de/sbexactrandhistogrm_en/

'Source (DE): http://www.berndplumhoff.de/sbexactrandhistogrm de/

'(C) (P) by Bernd Plumhoff 01-May-2021 PB V0.9

Dim i As Long, j As Long, n As Long
Dim vW As Variant
Dim dSumWeight As Double, dR As Double

Randomize

With Application.WorksheetFunction

vW = .Transpose (vileight)

On Error GoTo Errhdl

i = vW(l) 'Throw error in case of horizontal array
On Error GoTo 0

n = UBound (VW)

ReDim dWeight (1 To n) As Double
ReDim dSumWeightI(0 To n) As Double
ReDim vR(1l To ldraw) As Variant

For 1 = 1 To n
If vW(i) < 0# Then 'A negative weight is an error
sbExactRandHistogrm = CVErr (xlErrValue)
Exit Function
End If
'Calculate sum of all weights
dSumWeight = dSumWeight + vW(i)
Next i

If dSumWeight = 0# Then
'Sum of weights has to be greater zero
sbExactRandHistogrm = CVErr (xlErrValue)
Exit Function

End If

For 1 = 1 To n

'Align weights to number of draws

dWeight (i) = CDbl(ldraw) * vW(i) / dSumWeight
Next i

vW = RoundToSum(dWeight, O0)

On Error GoTo Errhdl

i = vW(l) 'Throw error in case of horizontal array
On Error GoTo 0

For j = 1 To ldraw

dSumWeight = 0#

dSumWeightI(0) = O#

For 1 =1 To n
'Calculate sum of all weights
dSumWeight = dSumWeight + vW(i)
'Calculate sum of weights till i
dSumWeightI (i) = dSumWeight

Next i

dR = dSumWeight * Rnd

i=n
Do While dR < dSumWeightI (i)
i=1i-1
Loop
vR(j) = dmin + (dmax - dmin) * (CDbl(i) + _
(dR - dSumWeightI(i)) / vW(i + 1)) / CDbl(n)
vW(i + 1) = vW(i + 1) - 1#
Next j

sbExactRandHistogrm = vR
Exit Function

Errhdl:

'Transpose variants to be able to address
'them with vW(i), not vW(i, 1)

vW = .Transpose (VW)

Resume Next

End With

End Function

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024)

Seite 11 /29

Fair Staff Selection Based on Team Size

Let us assume your company needs to get some special tasks done. All staff members can do the
work. You want the teams to second their staff based on the size of each team. This selection can be
done by the user-defined function RoundToSum.

Since we cannot guarantee that each team can provide staff exactly in relation to its staff number for
each special task, we need to call RoundToSum including a lookback onto previous staff selections.

RoundToSum uses the largest remainder method (also called Hare-Niemeyer) which can suffer from
the Alabama paradoxon. If the total number of staff to be selected increases it can happen that a
team needs to provide less staff than before. Because we cannot account for this in hindsight, this
paradoxon needs to be dealt with as soon as it occurs.

Example

On 1-Jan-2023 these teams exist:

A B C D E
1 Date Team A Team B Team C Team D
2 01.01.2023 5670 3850 420 60

Over the following three months these staff numbers are required for special tasks and are selected:

A B o} D E F G

Calculate Allocation

1 Date Demand Comment Team A Team B Team C Team D
2 |01.01.2023 323 183 124 14 2
3 01.02.2023 1 Recalc 11.03.2023 10:52:24. Allocation for 1 amended to 0. Allocation for 3 set to Q. Q 1 0 0
4 01.03.2023 9676 Recalc 11.03.2023 10:52:24. 5487 3725 406 58

On 1-Feb-2023 the largest remainder method would have selected a total number of 184, 125, 13,
and 2 employees of teams A, B, C, and D ausgewahlt. But on 1-Jan-2023 team C had already provided
14 members of staff which cannot be taken back. This means that team A or team B needs to provide
one employee less. The implemented algorithm looks left to right to account for this, so in this case
team A is impacted.

On 1-Mar-2023 all remaining staff counts of all teams are requested. The algorithm selects for each
team exactly its staff count in total because the lookback includes all request data records.

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024) Seite 12 / 29

sbFairStaffSelection Program Code

Enum TeamColums
tc Date = 1
tc_TeamStart

End Enum

Enum AllocationColumns
ac_Date = 1
ac_Demand
ac_Comment
ac_TeamStart

End Enum

Sub sbFairStaffSelection ()

'Based on the weights defined in tab Teams this program allocates

'a "fair" selection (the number given in column Demand of tab
'Allocation) of staff from these teams. This program uses (calls) RoundToSum
'which applies the largest remainder method, so the Alabama paradoxon
'must be taken care of. It also applies a lookback up to the topmost
'allocation data row.

'In case of negative selection counts (i. e. the Alabama paradoxon)
'the negative values will be set to zero and the necessary amendments
' (reductions) will be applied from left to right. Please order your
'teams with ascending sizes or descending sizes to account for this.
'Source (EN): https://www.sulprobil.de/sbfairstaffselection_en
'Source (DE): https://www.bplumhoff.com/sbfairstaffselection_de

'(C) (P) by Bernd Plumhoff 09-Mar-2023 PB V0.1

Dim bLookBack As Boolean
Dim bReCalc As Boolean
Dim i As Long
Dim j As Long
Dim k As Long
Dim m As Long
Dim lAmend As Long
Dim 1lCellResult As Long
Dim lDemand As Long
Dim lRowSum As Long
Dim 1Sum As Long
Dim 1Total As Long 'Most recent total number of staff in all teams

Dim sComment

String

Dim vAlloc As Variant
Dim vTeams As

lantc

Dim state As SystemState

Set state = New SystemState

With Application.WorksheetFunction

vTeams = .Transpose (.Transpose (Range(wsT.Cells (1, 1).End(xlDown).Offset (0, tc_TeamStart - 1),
wsT.Cells (1, 1).End(xlDown) .End(x1ToRight))))

j = UBound (vTeams)

ReDim dAlloc(l To j) As Double

1Total = .Sum(vTeams)

bReCalc = False

i=2

1Demand = wsA.Cells (i, ac_Demand)

Do While lDemand > 0

1RowSum = .Sum(Range (wsA.Cells (i, ac_TeamStart), wsA.Cells(i, ac_TeamStart + j)))

If lDemand <> lRowSum Then bReCalc = True

If bReCalc Or wsA.Cells(i + 1, ac_Demand) = 0 Then
sComment = "Recalc " & Format (Now(), "DD.MM.YYYY HH:nn:ss") & ". "
bLookBack = False
k=1-1

If k > 1 Then
bLookBack = True
1Demand = 0
1sum = 0
ReDim 1TeamSum(l To j) As Long
Do While k > 1
1Sum = 1Sum + wsA.Cells(k, ac_Demand)
1Demand = wsA.Cells(i, ac_Demand) + 1Sum
Form = 1 To j
1TeamSum(m) = lTeamSum(m) + wsA.Cells(k, m + ac_TeamStart - 1)
Next m
'If 1Sum >= 1Total Then Exit Do 'Uncomment if lookback should be restricted
'to total staff number

Loop
End If

Form = 1 To j
dAlloc(m) = lDemand * vTeams (m) / 1lTotal
Next m

vAlloc = RoundToSum(vInput:=dAlloc, 1Digits:=0)

If bLookBack Then
Form = 1 To j
1CellResult = vAlloc(m) - l1TeamSum (m)
If 1CellResult < 0 Then
'The Alabama Paradoxon: we have to reduce other parties'

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024) Seite 13 /29

'allocations because we cannot have negative allocations
l1Amend = lAmend - l1lCellResult
End If
vAlloc(m) = 1CellResult
Next m
If lAmend > 0 Then
Form = 1 To j
1CellResult = vAlloc (m)
If 1CellResult < 0 Then
vAlloc(m) = 0
sComment = sComment & "Allocation for " & m & " set to 0. "
ElseIf 1lCellResult > 0 And lAmend > 0 Then
If 1CellResult > lAmend Then

vAlloc(m) = 1lCellResult - lAmend
lAmend = 0
Else
vAlloc(m) = 0
l1Amend = lAmend - lCellResult
End If
sComment = sComment & "Allocation for " & m & " amended to " & _
vAlloc(m) & ". "
End If
Next m
End If
End If
wsA.Cells (i, ac_Comment) = sComment
For m = 1 To j
wsA.Cells (i, ac_TeamStart + m - 1) = vAlloc(m)
Next m
End If
i=1+1

1Demand = wsA.Cells (i, ac_Demand)
Loop
Range (wsT.Cells (1, tc_TeamStart), wsT.Cells(l, 250)).Copy Destination:=wsA.Cells(l, ac_TeamStart)
End With

End Sub

Distribute a Sample Normally

You have 11.256 christmas trees in stock. A customer wants to purchse 1.500 of them, with one
condition: the average height of the trees must be 6.50 meters.

Your goal is to keep the remaining trees as close to a normal distribution as possible.

Rest should be normal distributed

500

© D D D D D D A D D D D D D D O D
F PR F P TP P F PP TP T

o

Court ——ldeal would be se—Rest

How can you achieve this?

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024) Seite 14 / 29

A Sample Calculation

c4 i fx :MTRA\IStRoundTnSUm(VORM.VERT(A4:A21;Bz4;525;=ALSCH;*BZZ;’1D;D;;2;;
A B C D E F G H

1 Withdrawal: 1500
2 Average Length: 6,5

Ideal Aute- Temp) Ideal
3 Length | Count w::ld witharowal | resure | Withdrawal | Rest w::ld
4| 560 20 o] 20 0 10 10 0
5 5,70 40 3 37 3 15 25 3
6 5,80 40 14 26 14 8 32 14
7 5,90 72 59 16 56 8 64 56
8 6,00 148 192 0 148 0 148 179
g 6,10 372 437 0 372 0 372 456
10 6,20 876 | 1.016 0 876 0 876 918
11 6,30 1.660 | 1.644 200 1.460 165 1.495 | 1.460
12 6,40 2.160 | 2102 323 1.837 281 1.879 | 1.37
13 6,50 2.276 | 2135 449 1.827 416 1.860 | 1.827
14 6,60 1.820 1.8 384 1.436 383 1.437 | 1.436
15 6,70 1.036 | 1073 143 893 143 893 893
16 6,80 464 536 25 439 28 436 439
17 6,90 212 212 41 171 43 169 171
18 7,00 48 66 0 a8 0 48 52
19 7,10 12 16 0 12 0 12 13
20 7,20 0 3 0 0 0 0 2
21 7,30 0 0 0 0 0 0 0
22 Total 11.256 | 11.256 1.664 9.592 1.500 9.756 | 9756
23
24 |AVERAGE 6,45 6,45 6,47 6,45 6,50 | 6,45 6,45
25 |STDEV.P 0,21 0,21 0,20 0,21 0,21
26 |SKEW.P -0,35 -0,00 0,01 -0,20 | -0,00
27 |[KURT 0,95 0,02 0,03 0,53 | 002

Let’s assume the count and distribution of trees are as shown in the diagram above.

A useful first step is to check whether your original sample is already fairly normally distributed. We
can calculate skewness using the function sbSWV. The skewness is approximately
=sbSWV(“SKEW.P”;SAS4:5A521;B54:B521) = -0.35. Similarly, we calculate kurtosis with
=sbSWV(“KURT”;SAS4:5A521;B54:B521), resulting in approximately 0.95. As shown in the diagram
(yellow-orange graph), the original sample is already fairly normally distributed.

However, ideally, the distribution would match the one shown in column C (formula:
=TRANSPOSE(RoundToSum(NORM.DIST(A4:A21,B24,B25,FALSE)*B22/10,0))). In this case, skewness
and kurtosis would be close to zero, though rounding may lead to slight deviations.

Column H displays the ideal normal distribution after the withdrawal of trees.

The automated withdrawals in column D aim to achieve this ideal distribution. However, this is only
possible if there are enough trees of the necessary lengths. If not, you must enter a withdrawal of O,
as trees cannot be added to the sample. For instance, in the diagram, you can see that at a length of

6.10 meters, the ideal distribution exceeds the actual remaining distribution.

The original formulas in column F should read =D4 to =D21.

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024) Seite 15/ 29

These formulas are manually overwritten to:

- Achieve a total withdrawal of 1,500 trees.

- Ensure an average tree height of 6.5 meters.

- Maintain a standard deviation in the remaining sample close to the original.
- Reduce the absolute skewness compared to the original.

- Reduce the absolute kurtosis compared to the original.

In the provided sample file, significant deviations are highlighted using conditional formatting.

A Note of Caution:

It’s not always possible to achieve a fairly normal distribution in the remaining sample. It might even
be impossible to withdraw trees that meet a desired average - for example, asking for 21 trees with
an average height of 5.60 meters could be unachievable.

Helper Functions

Excel offers many basic statistical functions, but they don’t handle weighted values. The user-defined
function sbSWYV (statistics for weighted values) used here provides an easy and quick assessment of
how well the samples are normally distributed.

To ensure that the sum of the ideal integer distributions matches the sum of the original samples,
the user-defined function RoundToSum was employed. Note that the parameter 2 is used for error

type to minimize the relative error, preventing artificial rounding errors, particularly in the tails of the
distributions.

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024) Seite 16 / 29

sbSWV Program Code

#Const SORTED = False
Function sbSWV(sStat As String, _

ParamArray vInput() As Variant) As Variant
'Calculate some statistical measures of weighted values
'Source (EN): http://www.sulprobil.de/sbswv_en/

'Source (DE): http://www.berndplumhoff.de/sbswv_de/

'(C) (P) by Bernd Plumhoff 20-Aug-2024 PB V(.81

Dim d As Double, d2 As Double, dSum As Double

Dim i As Long, j As Long, k As Long, m As Long, n As Long
Dim vV, vV2, vV3, VW 'Variants

With Application.WorksheetFunction
vV = .Transpose (vInput (0))

Select Case sStat

Case "COVAR", "CORREL"

vV2 = .Transpose (vInput (1))
vW = .Transpose (vInput (2))
Case Else
vW = .Transpose (vInput (1)
End Select
On Error GoTo errhdl
i = vV(l) 'Force error in case of vertical arrays

On Error GoTo 0
If UBound(vV) <> UBound(vW) Then
'Arrays of values and of weights must have same dimension
sbSWV = CVErr (x1ErrNum)
Exit Function
End If
Select Case UCase (sStat)
Case "AVERAGE"
sbSWV = .SumProduct (vV, vW) / .Sum(vW)
Case "CORREL"
vV3 = vV
dSum = .Sum (VW)
d = .SumProduct (vV, vW) / dSum
d2 = .SumProduct (vV2, vW) / dSum
For 1 = LBound(vV) To UBound (vV)
vV3 (i) = vW(i) * (vV(i) - d) * (vV2(i) - d2)
vV (i) = vW(i) * (vV(i) - d) " 2#
vV2 (i) = vW(i) * (vV2(i) - d2) ~ 2#

Next i
sbSWV = .Sum(vV3) / Sgr(.Sum(vV) * .Sum(vV2))
Case "COVAR"
dSum = .Sum (VW)
d = .SumProduct (vV, vW) / dSum
d2 = .SumProduct (vV2, vW) / dSum
For 1 = LBound(vV) To UBound (vV)
vV (i) = vW(i) * (vV(i) - d) * (vV2(i) - d2)
Next i
sbSWV = .Sum(vV) / dSum
Case "KURT"
n = .Sum(vW)
ReDim dV (1 To n) As Double
k=1
For 1 = 1 To UBound (VW)
For j = 1 To vW(i)
dv (k) = vV (i)
k=k+1
Next j
Next i
sbSWV = .Kurt (dV)
Case "MODE"
k = .Max (VW)

sbSWV = CVErr (x1ErrNA)
Exit Function
End If
sbSWV = vV (.Match(.Max (vW), vW, False))
Case "MEDIAN"
If .Min(vW) < 1 Then
sbSWV = CVErr (x1ErrNA)
Exit Function

End If
k=0
j = .Sum(vW)

m = j Mod 2
For i = LBound(vW) To UBound (VW)
If vW(i) Mod 1 <> 0 Then
sbSWV = CVErr (x1ErrNum)
Exit Function
End If
#If Not SORTED Then
'Ensure ascending values in case input is unsorted.
'This simple bubble sort leads to a quadratic runtime
'but it's still quicker on 50 input values or more than
'Lorimer Miller's nifty worksheet function approach
'=LOOKUP (2, 1/FREQUENCY (SUM (B1:B50) /2, SUMIF (A1:A50, "<="&A1:A50,B1:B50)),A1:A50)
'BTW: Lorimer's approach is different from Excel's MEDIAN
' (see below); and his other elegant array formula
'=MEDIAN (IF (TRANSPOSE (ROW (A1:A1000)) <=B1:B50,A1:A50))
'calculates like Excel's MEDIAN but IMHO it's way too slow
For n = 1 + 1 To UBound (VW)
If vV(n) < vV (i) Then

d = vV(i)
vV (i) = vV(n)
vV(n) =d
d = viW (i)
vW (i) = vW(n)
vW(n) = d

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024) Seite 17 / 29

End If
Next n
#End If
k =k + vi(i)
Select Case 2 * k
Case j + m
If m = 0 Then
#If Not SORTED Then
'Ensure vV(i + 1) is next greater value
For n = 1 + 2 To UBound (VW)
If vW(n) < vV(i + 1) Then
vV(i + 1) = vV(n)
End If
Next n
#End If
'Here Lorimer's function mentioned above would
'return vV (i), the lower value
SbSWV = (vV(i) + vV(i + 1)) / 24
Else
sbSWV = vV (i)
End If
Exit Function
Case Is > Jj + m
sbSWV = vV (i)
Exit Function
End Select
Next i
Case "SKEW.P"
n = .Sum (VW)
ReDim dV (1l To n) As Double
k=1
For 1 = 1 To UBound (VW)
j = 1 To vW (i)
) = vV(i)
k+ 1

sbSWV = .Skew_p (dV)
Case "STDEV"
dSum = .Sum (VW)
d = .SumProduct (vV, vW) / dSum
For 1 = LBound(vV) To UBound (vV)
vV (i) = Rbs(vV(i) - d) " 2#
Next i
sbSWV = Sqgr (.SumProduct (vV, vW) / (dSum - 1#))
Case "STDEV.P"
dSum = .Sum (VW)
d = .SumProduct (vV, vW) / dSum
For 1 = LBound(vV) To UBound (vV)
vV (i) = Abs(vV (i) - d) "~ 2#

Next i

sbSWV = Sqgr(.SumProduct (vV, vW) / dSum)
Case "VAR"

dSum = .Sum (VW)

d = .SumProduct(vV, vW) / dSum

For 1 = LBound(vV) To UBound (vV)

vV (i) = vW(i) * (vV(i) - d) ~ 2#
Next i

sbSWV = .Sum(vV) / (dSum - 1#)
Case Else
sbSWV = CVErr (x1ErrValue)
End Select
Exit Function
errhdl:
'Transpose variants to be able to address them
'with vV (i), not vV(i,1)
vV = .Transpose (VV)
vW = .Transpose (VW)
Select Case sStat
Case "COVAR", "CORREL"
vV2 = .Transpose (vV2)
End Select
Resume Next
End With
End Function

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024) Seite 18 / 29

Distribution of Budgets Among Remaining Staff

When staff members leave, their budgets can be redistributed among the remaining employees

based on initial budget. But how can this redistribution be done accurately and fairly?

A Simple Approach

A simple formula which you can copy down from D3 to D12 is =ROUND(C3*SB52/5C52,2):

D3

1
2
3
4
5
i)
7
2
g

10
11
12

A
Name
Summe
Lehmann
Schulze
Schultze
Schmidt
Schmitt
Maller
Maier
Mayer
Meier
Meyer

- Jx =RUNDEN[C3*5B52/5C52;2)
B C D
Betrag Loschung Meuer Betrag

94.020,00 40.000,00 94.020,02

49.000,00 -
6.000,00 6.000,00 14.103,00
5.750,00 5.750,00 13.515,38
5.500,00 5.500,00 12.927,75
5.270,00 5.250,00 12.340,13
5.000,00 -
4.750,00 4.750,00 11.164,88
4,500,00 4,500,000 10.577,25
4.250,00 4.250,00 9.989,63
4.000,00 4.000,00 9.402,00

You can delete the budgets of leavers easily in column C. The order of deletions does not matter.

The obvious disadvantage of this approach is a potential rounding difference, because the sum of
rounded values is not necessary equal to the rounded sum of not-rounded summands. The example
above shows a difference of 0.02.

A correct Calculation

With the user defined function RoundToSum you can use the matrix formula
{=RoundToSum(C4:C13*5BS53/5C53,D1)}:

D4

o TS R L

W G0 =) on en

11
12

13

A B C

Runden auf Nachkommastellen:
Mame Betrag Léschung
summe 94.020,00 40.000,00
Lehmann 49,000,00
schulze 6.000,00 6.000,00
Schultze 5.750,00 5.750,00
Schmidt 5.200,00 5.300,00
Schmitt 5.270,00 5.250,00
Miller 5.000,00
Maier 4.750,00 4.750,00
Mayer 4,500,00 4,500,00
Meier 4.250,00 4.250,00
Meyer 4.000,00 4.000,00

(C) (P) 2024 Bernd Plumhoff

S || {=RoundToSum{C4:C13*3B53/5C53;01)}

D

94.020,00

2
MNeuer Betrag

14.103,00
13.515,37
12.927,75
12.340,12
11.164,88
10.577,25

9.989,63

9.402,00

RoundToSum (Status: 12-Oct-2024)

E

Seite 19 /29

RoundToSum sometime needs to round to the ‘wrong’ side but then it ensures a minimal error.

In addition to that you can round to other decimals with RoundToSum, for example to 10s:

D4 - S || {=RoundToSum(C4:C13*$B53/5C53;D1)}
A B C D E

1 Runden auf Nachkommastellen: -1

2 |Name Betrag Laschung MNeuer Betrag

3 Summe 94.020,00 40.000,00 94.020,00

4 |Lehmann 49,000,00 -

5 |Schulze 6.000,00 6.000,00 14.100,00

6 |Schultze 5.750,00 5.750,00 13.520,00

7 |Schmidt 5.500,00 5.500,00 12.930,00

8 |Schmitt 5.270,00 5.250,00 12.340,00

g |Mialler 5.000,00 -

10 | Maier 4.750,00 4.750,00 11.160,00

11 |Mayer 4.500,00 4.500,00 10.580,00

12 |Meier 4,250,00 4,250,00 9.950,00

13 |Meyer 4.000,00 4.000,00 9.400,00

Please notice here, that RoundToSum cannot create the original sum if it is not rounded to the
number of desired decimals.

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024) Seite 20/ 29

Take Vacation When Less is

Going on

If your business fluctuates strongly seasonally, you can plan the vacation of your staff accordingly and

consider hiring seasonal staff:

30.000
25.000
20.000
15.000
10.000
5.000
&F’d &‘h(‘\
¥ &

Take Vacation when Sales are low

& & > & £ &
@;,* Ls <+ o) 9’% @é@é
of

F & &

.
& & F

N Sales sssss)/acation (strict) —esssse\/acation (moderate)

16

11

=]

E

]

Note: Of course you cannot force anybody when to take a vacation and how many days are to be
taken. These calculations are just meant to be suggestions of reasonable indicators.

Simple Example

If you like to take the maximum sales values (here: 24,000) as a basis, applying zero vacations to it,
and scale the vacation days linearly to the other sales values:

Period
Total
January
February
March
April

May

June

July
August
September
October
November

December

(C) (P) 2024 Bernd Plumhoff

Sales Vacation days (integer)
230,000 83
20,000 6
24,000 -
23,000 1
20,000 6
19,000 7
15,000 13
14,000 14
17,000 10
21,000 4
20,000 6
19,000 7
18,000 9

RoundToSum (Status: 12-Oct-2024)

Seite 21 /29

The formula in cell C5 which spills down to B16 is =(SCS2-B5:816)/(SC52*12-5B54)*SCS4:

c5 et

A B
1
2
3 Sales
4 |Total 230.000
5 |January 20.000
6 |February 24.000
7 |March 23.000
8 |April 20.000
9 |May 19.000
10 [June 15.000
11 |July 14.000
12 |August 17.000
13 |September 21.000
14 |October 20.000
15 |Movember 19.000
16 |December 13.000
17 Checksum Vacation

More Complex Example

If you got employees who are not present at specified months:

Formula in cell E21 reads:

=IFERROR((ES5:ES16="x")*ES17*SDS5:SDS16/SUM((ES5:E$16="x")*$D$5:SD$16),0)

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024)

G

Ffe || =[C32-5B5:3B16)/(C52¥12-5B34)*C34
C D E E
Sales Limit Higher Sales Overwritten with
for no Limit for no higher value to allow
vacation: vacation: for vacation in month
24.000 28.000 <- with max sales
Vacation Vacation [|Vacation Vacation
(strict) (strict) (moderate] (moderate)
23 23
5,7 6 6,3 6
3,1 3
14 1 3.9 4
5,7 il 6,3 6
72 7 7.0 7
12,9 13 10,2 10
14,3 14 11,0 11
10,0 10 8,6 g
4,3 4 5,5 6
5,7 il 6,3 6
7.2 7 70 7
8,0 9 7.8 g
83,0 L] 83,0 23

Seite 22 / 29

Formula in Cell E37:

=TRANSPOSE(IFERROR(RoundToSum(E21:E32,0),0))

E21 -

3 Sales

4 |Total 230.000
5 |lanuary 20.000
6 |February 24,000
T |March 23.000
2 |April 20.000
9 |May 15.000
10 |June 15.000
11 |July 14.000
12 |August 17.000
13 |September 21.000
14 |October 20.000
15 |November 12.000
16 |December 18.000
17 Total

fe =WENMFEHLER((ES5:E516="x")*E$17*5D55:5D516/SUMME((ES5:ES16="x") *5D55:50516);0)

C D E F G H | J K
Sales Limit for
no vacation:

24.000 <= Overwrite with higher value to allow for vacation in month with max sales
Vacation days Vacation days

(fractional) (integer) Vacation Claim
Andrew Benjamin Charlie David
57 G x X x
- - x x x
14 1 X X X X
5,7 B ® ® ® x
7.2 7 x x ®
12,9 13 X X X
143 14 X X X
10,0 10 X X X
43 4 X X ® ®
5.7 =] ® ® ® x
7,2 7 X X x
8,6 9 X X X
83,0 83| 25,0 21,0 21,0 16,0
Vacation days (fractional)
Total Andrew Benjamin Charlie David
January 6,1 18 19 - 25
February - - - - -
March 1,3 0,3 0,3 0,3 0,4
April 7.8 1.8 19 1,6 2,5
May 8,2 z,1 2,2 19 -
June 11,5 39 41 3,5 -
July 1z,4 42 4.4 3,8 -
August 89 30 31 27 -
September 52 1,2 13 11 1,6
October 7.8 1,8 19 1,6 2,5
November 6,9 21 - 19 2,9
December 39 2,7 - 2,5 3,7
Total 83,0 25,0 21,0 21,0 16,0
Vacation days (integer)
Total Andrew Benjamin Charlie David
January 7 2 2 - 3
February - - - - -
March - - - - -
April 8 2 2 2 2
May =} 2 2 2 -
June 11 4 4 3 -
July 13 4 5 4 -
August 9 3 3 3 -
september 5 1 1 1 2
October 3 2 2 2 2
November 7 2 - 2 3
December 9 3 - 2 4
Total 83 25 21 21 16

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024) Seite 23 /29

Assign Work Units Adjusted by Delivered Output

How can you fairly assign work units to your staff while considering the number of units they have
already delivered?

A B C D E

Total units
1 still to do 86
2 Total 90,6 86 86 86
e
4 Fair share 6,307143
5 |Lecturer 1 12 1] 1] L)
& |Lecturer 2 i1 1] (i} o}
7 |Lecturer 3 g 1] 1] L)
8 |Lecturer & 3 o 1]]
0 |Lecturer 5 2 1] 1] L)
10 |Lecturer & 7 o 1]]
11 |Lecturer 7 7 1] 1] L)
12 |Lecturer 8 B 1] 1] 1]
13 |Lecturer 9 5 0,43 (i} 1
14 |Lecturer 10 3 2,43 3 3
15 |Lecturer 11 3 2,43 2 3
16 |Lecturer 12 2 3,43 4 4
17 |Lecturer 13 2 3,43 3 a4
18 |Lecturer 14 2 3,43 4 4
19 |Lecturer 15 2 3,43 3 a4
20 |Lecturer 16 2 3,43 3 a4
21 |Lecturer 17 1 443 5 4
22 |Lecturer 18 0,6 4 B3 5 3
23 |Lecturer 19 0 5,43 5 5
24 |Lecturer 20 (] 5,43] 3
25 |Lecturer 21 (v} 5,43 a 3
26 |Lecturer 22 (] 5,43 5 5
27 |Lecturer 23 (v} 5,43] 3
28 |Lecturer 24 (] 5,43 5 5
29 |Lecturer 25] 5,43] 3
30 |Lecturer 26 (] 5,43 5 5
31 |Lecturer 27] 5,43] 3
32 |Lecturer 28 (] 5,43 5 5

Yellow cells show input values, green ones are intermediate or helper cells, and blue cells mark final
output values. Note: You need to enter ‘Units done’ in descending order.

In this example 90.6 units have already been delivered, but 86 more units are to be assigned to 28

lecturers. A fair share for each lecturer would be (90.6 + 86) / 28 = 6.3, but 7 lecturers have already
delivered more than that.

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024) Seite 24 / 29

The key worksheet formula is in cell C5:
=MAX(0,BS4-B5-SUMPRODUCT(--(CS4:C4=0),B54:B4-BS4)/(ROWS(BS5:8532)-SUMPRODUCT(--
(CS4:C4=0))+1))

Please notice that the fair share has been put into cell B4 intentionally and C4 has been kept empty,
so that this formula could be just entered into C5 and copied down.

Column C shows the fractional results. In column D a simple worksheet function approach has been
applied to round values of column C to integers, preserving their original sum.

As you can easily see, column E shows smoother results using the user defined function
RoundToSum.

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024) Seite 25/ 29

RoundToSum Versus Other Methods

RoundToSum Versus Other “Simple” Methods

There are several different naive approaches circulating around which try to round values preserving

their rounded sum:

- (worst) Round all values but the last one and replace the last one by the rounded original
sum minus the sum of the previously rounded values (i.e. aggregate all rounding errors in the

last summand):

2 Total

B C
Original Data

2,594 2,59
0,875 0,88
0,865 0,87
0,344 0,34
0,455 0,46
0,055 0,04

Aggregate Rounding Error Formulain C

—SUM(C4:C8)

~ROUND(B4,2)
~ROUND(B5,2)
—ROUND(B6,2)
—ROUND(B7,2)

~ROUND(B$2,2)-SUM(C$4:C7)

- (better, but still bad) Apply a cascading (sliding) round:

2 Total

B C
Original Data

2,593 2,59
0,875 0,88
0,865 0,86
0,344 0,34
0,454 0,46
0,055 0,05

Cascading Round

Formula in C

=SUM(C4:C8)

=ROUND(SUM(B3:$B4),2)-SUM(SC$3:$C3)
=ROUND(SUM(B3:$B5),2)-SUM(SC$3:$C4)
=ROUND(SUM(B3:$B6),2)- SUM($C$3:$C5)
=ROUND(SUM(B3:$B7),2)- SUM($C$3:$C6)

=ROUND(SUM(B3:$B8),2)-SUM($C$3:$C7)

Let us compare these approaches to RoundToSum.

(C) (P) 2024 Bernd Plumhoff

RoundToSum (Status: 12-Oct-2024)

Seite 26 / 29

Calculation Example

We create 40 random numbers RAND() * 1000 and compare as follows:

A B B D E F G H | J
1 | I 1l [\ N Vi Wil Wil
Original ‘ Cascading ‘ Simple Round & ‘
2 unrounded RoundToSum Round Amend Last Simple Round | Difference Il - V | Difference |ll - V | Difference IV -V
3 Summands 678.6474579 678.65 678.65 678,65 678,65
4 146,7029479 146,70 146,70 146.7 146,7
5 808.4307786 808.43 808.43 808.43 808.43
6 878,0595004 878,06 878.06 878.06 878,06
7 801,0013684 801.00 801,00 801 301
8 895,2150029 895,21 895,22 895,22 895,22 0,01
9 55,04805448 55,05 55.05 55,05 55,05
10 5768633069 57.69 57,68 57.69 57,69 -0.01
11 740,3151284 740,31 740,32 740,32 740,32 -0.01
12 437.4782795 437.48 437,47 437.48 437 48 -0.01
13 185,281457 185,28 185,29 185,28 185,28 0,01
14 950,9552226 950,96 950,95 950,96 950,96 -0.01
15 692.0965454 692,10 692.10 692.1 692.1
16 1471681062 14717 14747 14717 14717
17 237137552 23714 237,13 23714 23714 -0.01
18 487,2154213 487,22 487,22 487,22 487,22
19 364,4641508 364.46 364,46 364.46 364,46
20 525,2537907 52525 525,26 52525 52525 0,01
21 186.8746365 186.87 186.87 186,87 186,87
22 731,7332769 731,73 731,74 731,73 73173 0,01
23 629,6751693 629,67 629,67 629,68 629,65 0,01 -0.01
24 76.5434454 76.54 76.54 76.54 76.54
25 796.2709821 796.27 796.27 796,27 796,27
26 718.8760902 718.88 718.88 718.88 718,88
27 822,8369312 822,84 822,84 82284 822,84
28 816.4265379 816.43 816,42 816,43 816,43 -0.01
29 815,4299402 81543 815,43 815.43 815,43
30 925.4513501 926,45 925,46 926,45 925,45 0.01
31 1305991436 130,60 130,59 130.6 130.6 -0.01
32 743,1380489 743,14 743,14 743,14 743,14
33 397,6661651 397.67 397.67 397.67 397,67
34 759,5541378 759.55 759,55 759,55 759,55
35 517.7971853 517.80 517.80 517.8 517.8
36 668.9198847 668,92 668.92 668,92 668,92
37 927,6280481 927.63 927,63 927,63 927,63
38 £90,0299826 690,03 690,03 690,03 690,03
39 10,44383544 10.44 10.44 10,44 10,44
40 994,0458854 994,05 994,05 994,05 994,05
41 719,3612933 719.36 719,36 719,36 719,36
42 871,3192169 871,32 871,32 871,29 871,32 -0,03
43 Total 23038,77828 23.038,78 23.038,78 23.038,78 23.038,81 0,03 0,03 0,03
44 | ABS Difference to Original 0,11 0,15 0,14

Please note that the formula in C3 for the cascading round includes the title row so that it can be
copied down.

As you can see, if we simply round each single number, the resulting sum would differ from the
original rounded sum by -0.03. Column J (VIII) shows the difference of the aggregated rounding error
-0.03 in the last summand. Column F (IV) shows the corresponding rounded numbers. Worst case
would be here to come up with an aggregated rounding error of n * 0,005 with n being the count of
your numbers. Example: Take 40 times the number 0.005 instead of the 40 random numbers.

Good practical examples, why you should not aggregate rounding errors in the last summand, are
normally distributed samples of integers.

The cascading (sliding) round in column | (VIl) shows 11 roundings to the wrong side. Column E (ll1)
shows the corresponding rounded numbers. Worst case would be for the cascading round to round
half of your numbers to the wrong side when all numbers could have been rounded correctly.
Example: Take 20 times the number -0.0049999 and then 20 times the number 0.0049999 instead of
the 40 random numbers.

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024) Seite 27 / 29

On the other hand, the optimal RoundToSum just rounds 3 values to the wrong side which result in
the least number of changes which achieve the correct rounded sum. The worst case would now
involve n/2 roundings to the wrong side with n being the count of your numbers. Example: Take 40
times the number 0.005 again instead of the 40 random numbers. This is the best solution with the
smallest absolute rounding error for each number and then with the smallest number of roundings
to the wrong side.

Conclusion

Use RoundToSum. It will apply the least number of changes and it will result in the correct sum with
the smallest absolute (or relative) error. It needs to be applied with an array formula because n > 1
output values depend on n > 1 input values.

A cascading round as shown above, i.e. using in cell E6 the formula =ROUND(SUM(5C55:5C5),2)-
SUM(SES4:5E4) does not need any VBA nor does it apply any array formula, but it can leave you with
a fairly high number of unnatural roundings which you can hardly explain to any senior manager.

But worst of all is the stupid approach of aggregating all rounding differences in the last summand.
Just imagine 1,000 people, each having 49 Cents, adding up to $490, which you should distribute
fairly, but rounded to a whole Dollar. In this case you would end up with $490 at the last person,
while RoundToSum would give the first 490 persons one Dollar each and all the others zero.

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 12-Oct-2024) Seite 28 / 29

RoundToSum Compared to sbDHondt

RoundToSum implements the Hare-Niemeyer approach. In the context of distributing parliamentary
seats, this method is superior to the D'Hondt approach. One key advantage is that the relative
percentage difference from an ideal proportional distribution is generally lower, as illustrated by the

following example:

fe | {=sbdHondt(B1,B3:B7)}

A B C D E F
1 69 Seats Rel. % diff from ideal distribution
2 |Party |Votes D'Hondt Hare-Niemeyer |D'Hondt Hare-Niemeyer
3 A 576,100 30 29 3.175% -0.265%
4 |B 554,844 29 25 3.556% -0.015%
5 C 94,920 4 5 -16.507% 4 .367%
6 |D 89,330 4 4 -11.282% -11.282%
T |E 51,901 2 3 -23.651% 14.524%
8 Total 1,367,095 69 69
sbDHondt Program Code
Function sbdHondt (1Seats As Long, vVotes As Variant) As t

'Implements the d'Hondt method for allocating

in

'party-list proportional representation political election

'systems.

'Source (EN): http://wwwAsulprohilAde/shdhondtien/
'Source (DE): http://www.berndplumhoff.de/sbdhondt_de/
'(C) (P) by Bernd Plumhoff 01-Dec-2009 PB V0.10

Dim i As Long, k As Long, n As Long

Dim vA As Va

int, vB As Variant, vR As Variant
Dim dMax As Double

With Application.WorksheetFunction

vA = .Transpose (.Transpose (vVotes))

vB = VA

n = UBound(vA, 1)

ReDim vR(1 To n, 1 To 1) As Variant

ReDim 1Denom(l To n) As Long

Do While i < lSeats
'identify max
dMax = .Max (vB)
k = .Match(dMax, vB, 0)
1Denom (k) = 1Denom(k) + 1
vB(k, 1) = vA(k, 1) / (1lDenom(k)
vR(k, 1) = vR(k, 1) + 1
i=1i+1

Loop

sbdHondt = VR

End With

End Function

+ 14#)

Literature

Diaconis, P., & Freedman, D. (13. Juli 2007), On Rounding Percentages.

Sande, G. (2005, August 7), Guaranteed Controlled Rounding for Many Totals in Multi-way and

Hierarchical Tables.

(C) (P) 2024 Bernd Plumhoff

RoundToSum (Status: 12-Oct-2024)

Seite 29 /29

